Critical mass of bacterial populations and critical temperature of self-gravitating Brownian particles in two dimensions
Pierre-Henri Chavanis
Physica A: Statistical Mechanics and its Applications, 2007, vol. 384, issue 2, 392-412
Abstract:
We show that the critical mass Mc=8π of bacterial populations in two dimensions in the chemotactic problem is the counterpart of the critical temperature Tc=GMm/4kB of self-gravitating Brownian particles in two-dimensional gravity. We obtain these critical values by using the Virial theorem or by considering stationary solutions of the Keller–Segel model and Smoluchowski–Poisson system. We also consider the case of one-dimensional systems and develop the connection with the Burgers equation. Finally, we discuss the evolution of the system as a function of M or T in bounded and unbounded domains in dimensions d=1, 2 and 3 and show the specificities of each dimension. This paper aims to point out the numerous analogies between bacterial populations, self-gravitating Brownian particles and, occasionally, two-dimensional vortices.
Keywords: Chemotaxis; Two-dimensional gravity; Self-gravitating Brownian particles; Nonlinear meanfield Fokker–Planck equations; Burgers equation; Two-dimensional turbulence (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107003391
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:384:y:2007:i:2:p:392-412
DOI: 10.1016/j.physa.2007.03.056
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().