EconPapers    
Economics at your fingertips  
 

Time evolution of the degree distribution of model A of random attachment growing networks

Wenchen He, Lei Feng, Lingyun Li and Changqing Xu

Physica A: Statistical Mechanics and its Applications, 2007, vol. 384, issue 2, 663-666

Abstract: For random growing networks, Barabás and Albert proposed a kind of model in Barabás et al. [Physica A 272 (1999) 173], i.e. model A. In this paper, for model A, we give the differential format of master equation of degree distribution and obtain its analytical solution. The obtained result P(k,t) is the time evolution of degree distribution. P(k,t) is composed of two terms. At given finite time, one term decays exponentially, the other reflects size effect. At infinite time, the degree distribution is the same as that of Barabás and Albert. In this paper, we also discuss the normalization of degree distribution P(k,t) in detail.

Keywords: Random growing networks; Degree distribution; Master equation (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107005432
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:384:y:2007:i:2:p:663-666

DOI: 10.1016/j.physa.2007.05.042

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:384:y:2007:i:2:p:663-666