EconPapers    
Economics at your fingertips  
 

On measure-theoretic aspects of nonextensive entropy functionals and corresponding maximum entropy prescriptions

Ambedkar Dukkipati, Shalabh Bhatnagar and M. Narasimha Murty

Physica A: Statistical Mechanics and its Applications, 2007, vol. 384, issue 2, 758-774

Abstract: Shannon entropy of a probability measure P, defined as -∫X(dP/dμ)ln(dP/dμ)dμ on a measure space (X,M,μ), is not a natural extension from the discrete case. However, maximum entropy (ME) prescriptions of Shannon entropy functional in the measure-theoretic case are consistent with those for the discrete case. Also it is well known that Kullback–Leibler relative entropy can be extended naturally to measure-theoretic case. In this paper, we study the measure-theoretic aspects of nonextensive (Tsallis) entropy functionals and discuss the ME prescriptions. We present two results in this regard: (i) we prove that, as in the case of classical relative-entropy, the measure-theoretic definition of Tsallis relative-entropy is a natural extension of its discrete case, and (ii) we show that ME-prescriptions of measure-theoretic Tsallis entropy are consistent with the discrete case with respect to a particular instance of ME.

Keywords: Measure space; Tsallis entropy; Maximum entropy distribution (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107005171
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:384:y:2007:i:2:p:758-774

DOI: 10.1016/j.physa.2007.05.020

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:384:y:2007:i:2:p:758-774