A continuous model of human dynamics
Bedogne’, C. and
G.J. Rodgers
Physica A: Statistical Mechanics and its Applications, 2007, vol. 385, issue 1, 356-362
Abstract:
Ideas and tools from statistical physics have recently been applied to the investigation of human dynamics. The timing of human activities, in particular, has been studied both experimentally and analytically. Empirical data show that, in many different situations, the time interval separating two consecutive tasks executed by an individual follows a heavy-tailed probability distribution rather than Poisson statistics. To account for this data, human behaviour has been viewed as a decision-based queuing system where individuals select and execute tasks belonging to a finite list of items as an increasing function of a task priority parameter. It is then possible to obtain analytically the empirical result P(τ)∼1/τ, where P(τ) is the waiting time probability distribution.
Keywords: Human dynamics; Complex systems (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107007042
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:385:y:2007:i:1:p:356-362
DOI: 10.1016/j.physa.2007.06.025
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().