From unweighted to weighted networks with local information
Xuelian Sun,
Enmin Feng and
Jianfeng Li
Physica A: Statistical Mechanics and its Applications, 2007, vol. 385, issue 1, 370-378
Abstract:
In this paper, we analyze an evolving model with local information which can generate a class of networks by choosing different values of the parameter p. The model introduced exhibits the transition from unweighted networks to weighted networks because the distribution of the edge weight can be widely tuned. With the increase in the local information, the degree correlation of the network transforms from assortative to disassortative. We also study the distribution of the degree, strength and edge weight, which all show crossover between exponential and scale-free. Finally, an application of the proposed model to the study of the synchronization is considered. It is concluded that the synchronizability is enhanced when the heterogeneity of the edge weight is reduced.
Keywords: Local information; Weighted networks; Complex networks; Disordered systems (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710700711X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:385:y:2007:i:1:p:370-378
DOI: 10.1016/j.physa.2007.06.022
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().