Exact solutions for nonlinear fractional anomalous diffusion equations
Jin-Rong Liang,
Fu-Yao Ren,
Wei-Yuan Qiu and
Jian-Bin Xiao
Physica A: Statistical Mechanics and its Applications, 2007, vol. 385, issue 1, 80-94
Abstract:
This work is devoted to investigating exact solutions of generalized nonlinear fractional diffusion equations with external force and absorption. We first investigate the nonlinear anomalous diffusion equations with one-fractional derivative and then multi-fractional ones. In both situations, we obtain the corresponding exact solution, its diffusive behavior, and the sufficient and necessary conditions for solutions satisfying the boundary condition W(±∞,t)=0 and the sharp initial condition W(x,0)=δ(x).
Keywords: Anomalous diffusion; Fractional derivative; Fractional diffusion equation (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107006838
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:385:y:2007:i:1:p:80-94
DOI: 10.1016/j.physa.2007.06.016
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().