EconPapers    
Economics at your fingertips  
 

Percolation thresholds of a group of anisotropic three-dimensional fracture networks

M. Khamforoush and K. Shams

Physica A: Statistical Mechanics and its Applications, 2007, vol. 385, issue 2, 407-420

Abstract: Percolation thresholds (average number of connections per object) of two models of anisotropic three-dimensional (3D) fracture networks made of mono-disperse hexagons have been calculated numerically. The first model is when the fracture networks are comprised of two groups of fractures that are distributed in an anisotropic manner about two orthogonal mean directions, i.e., Z- and X-directions. We call this model bipolar anisotropic fracture network (BFN). The second model is when three groups of fractures are distributed about three orthogonal mean directions, that is Z-, X-, and Y-directions. In this model three families of fractures about three orthogonal mean directions are oriented in 3D space. We call this model tripolar anisotropic fracture network (TFN). The finite-size scaling method is used to predict the infinite percolation thresholds. The effect of anisotropicity on percolation thresholds in X-, Y-, and Z-directions is investigated. We have revealed that as the anisotropicity of networks increases, the percolation thresholds in X-, Y-, and Z-directions span the range of 2.3 to 2.0, where 2.3 and 2.0 are extremums of percolation thresholds for isotropic and non-isotropic orthogonal fracture networks, respectively.

Keywords: Discrete fracture networks; Excluded volume; Fisher distribution; Connectivity; Numerical simulation; Fracture orientation (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107007868
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:385:y:2007:i:2:p:407-420

DOI: 10.1016/j.physa.2007.07.037

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:385:y:2007:i:2:p:407-420