Integral relations, a simplified method to find interfacial resistivities for heat and mass transfer
Jialin Ge,
D. Bedeaux,
J.M. Simon and
S. Kjelstrup
Physica A: Statistical Mechanics and its Applications, 2007, vol. 385, issue 2, 421-432
Abstract:
Integral relations were used to predict interface film transfer coefficients for evaporation and condensation. According to these, all coefficients can be calculated for one-component systems, using the thermal resistivity and the enthalpy profile through the interface. The expressions were verified in earlier work using non-equilibrium molecular dynamics simulations for argon-like particles, which interacted with a short-range Lennard-Jones (LJ) spline potential, which becomes zero at about 1.7 times the LJ-diameter. In this paper we verify the validity of these relations for a long-range LJ spline potential which becomes zero at 2.5 times the diameter. In an earlier paper we have documented for this system that in particular the absolute heat of transfer becomes much larger than the value predicted by kinetic theory. This was not the case for the short-range potential. The findings are important for modelling of one-component phase transitions.
Keywords: Argon; Vapor–liquid interface; Non-equilibrium molecular dynamics; Heat of transport; Interface film resistivities; Integral relations; Range of the potential (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107008011
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:385:y:2007:i:2:p:421-432
DOI: 10.1016/j.physa.2007.07.033
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().