Synchronization rate of synchronized coupled systems
Xiaohua Xiong,
Shangnan Hong,
Junwei Wang and
Dengwen Gan
Physica A: Statistical Mechanics and its Applications, 2007, vol. 385, issue 2, 689-699
Abstract:
Synchronization phenomena, an emergent property in networks of interacting dynamical elements, are widely observed in nature, and have become the subject of intense research. Here we will investigate the synchronization rate problem in coupled limit-cycle and chaotic oscillators. Based on the mode decomposition method and Gershgörin's discs theorem, some sufficient conditions for synchronization of coupled systems are obtained, and a synchronization rate is then derived. Such a synchronization rate indicates that the error functions between state variables of underlying individual systems tend to zero in the exponential form as time tends to the infinity. Several numerical examples are also given to validate the theoretical results.
Keywords: Synchronization rate; Limit cycle; Chaotic attractor; Floquet multipliers (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107007583
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:385:y:2007:i:2:p:689-699
DOI: 10.1016/j.physa.2007.07.003
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().