Memory-based persistence in a counting random walk process
Pierre Vallois and
Charles S. Tapiero
Physica A: Statistical Mechanics and its Applications, 2007, vol. 386, issue 1, 303-317
Abstract:
This paper considers a memory-based persistent counting random walk, based on a Markov memory of the last event. This persistent model is a different than the Weiss persistent random walk model however, leading thereby to different results. We point out to some preliminary result, in particular, we provide an explicit expression for the mean and the variance, both nonlinear in time, of the underlying memory-based persistent process and discuss the usefulness to some problems in insurance, finance and risk analysis. The motivation for the paper arose from the counting of events (whether rare or not) in insurance that presume that events are time independent and therefore based on the Poisson distribution for counting these events.
Keywords: Persistence; Random walk; Insurance; Markov chains (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107008758
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:386:y:2007:i:1:p:303-317
DOI: 10.1016/j.physa.2007.08.027
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().