Lorenzian analysis of infinite Poissonian populations and the phenomena of Paretian ubiquity
Iddo Eliazar
Physica A: Statistical Mechanics and its Applications, 2007, vol. 386, issue 1, 318-334
Abstract:
The Lorenz curve is a universally calibrated statistical tool measuring quantitatively the distribution of wealth within human populations. We consider infinite random populations modeled by inhomogeneous Poisson processes defined on the positive half-line—the randomly scattered process-points representing the wealth of the population-members (or any other positive-valued measure of interest such as size, mass, energy, etc.). For these populations the notion of “macroscopic Lorenz curve” is defined and analyzed, and the notion of “Lorenzian fractality” is defined and characterized. We show that the only non-degenerate macroscopically observable Lorenz curves are power-laws manifesting Paretian statistics—thus providing a universal “Lorenzian explanation” to the ubiquitous appearance of Paretian probability laws in nature.
Keywords: Macroscopic Lorenz curves; Lorenzian fractality; Paretian statistics; Poisson processes; Lévy-stable statistics (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107008485
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:386:y:2007:i:1:p:318-334
DOI: 10.1016/j.physa.2007.08.003
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().