Global synchronization for a class of dynamical complex networks
Xian Liu,
Jinzhi Wang and
Lin Huang
Physica A: Statistical Mechanics and its Applications, 2007, vol. 386, issue 1, 543-556
Abstract:
This paper is concerned with the problem of global synchronization for a class of dynamical complex networks composed of general Lur’e systems. Based on the absolute stability theory and the Kalman–Yakubovich–Popov (KYP) lemma, sufficient conditions are established to guarantee global synchronization of dynamical networks with complex topology, directed and weighted couplings. Several global synchronization criteria formulated in the form of linear matrix inequalities (LMIs) or frequency-domain inequalities are also proposed for undirected dynamical networks. In order to obtain global results, no linearization technique is involved through derivation of the synchronization criteria. Numerical examples are provided to demonstrate the effectiveness of the proposed results.
Keywords: Dynamical complex network; Global synchronization; Lur’e system; KYP lemma; Linear matrix inequality (LMI) (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107008850
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:386:y:2007:i:1:p:543-556
DOI: 10.1016/j.physa.2007.08.029
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().