Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices
Chih-Hsiung Tseng,
Sheng-Tzong Cheng,
Yi-Hsien Wang and
Jin-Tang Peng
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 13, 3192-3200
Abstract:
This investigation integrates a novel hybrid asymmetric volatility approach into an Artificial Neural Networks option-pricing model to upgrade the forecasting ability of the price of derivative securities. The use of the new hybrid asymmetric volatility method can simultaneously decrease the stochastic and nonlinearity of the error term sequence, and capture the asymmetric volatility. Therefore, analytical results of the ANNS option-pricing model reveal that Grey-EGARCH volatility provides greater predictability than other volatility approaches.
Keywords: Artificial neural networks; EGARCH; Grey forecasting model (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108000320
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:13:p:3192-3200
DOI: 10.1016/j.physa.2008.01.074
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().