A hyperchaos generated from Lorenz system
Xingyuan Wang and
Mingjun Wang
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 14, 3751-3758
Abstract:
This paper presents a four-dimension hyperchaotic Lorenz system, obtained by adding a nonlinear controller to Lorenz chaotic system. The hyperchaotic Lorenz system is studied by bifurcation diagram, Lyapunov exponents spectrum and phase diagram. Numerical simulations show that the new system’s behavior can be convergent, divergent, periodic, chaotic and hyperchaotic when the parameter varies.
Keywords: Lorenz system; Hyperchaos; Lyapunov exponents; Bifurcation (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108001957
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:14:p:3751-3758
DOI: 10.1016/j.physa.2008.02.020
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().