Martingales, nonstationary increments, and the efficient market hypothesis
Joseph L. McCauley,
Kevin E. Bassler and
Gemunu H. Gunaratne
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 15, 3916-3920
Abstract:
We discuss the deep connection between nonstationary increments, martingales, and the efficient market hypothesis for stochastic processes x(t) with arbitrary diffusion coefficients D(x,t). We explain why a test for a martingale is generally a test for uncorrelated increments. We explain why martingales look Markovian at the level of both simple averages and 2-point correlations. But while a Markovian market has no memory to exploit and cannot be beaten systematically, a martingale admits memory that might be exploitable in higher order correlations. We also use the analysis of this paper to correct a misstatement of the ‘fair game’ condition in terms of serial correlations in Fama’s paper on the EMH. We emphasize that the use of the log increment as a variable in data analysis generates spurious fat tails and spurious Hurst exponents.
Keywords: Martingales; Markov processes; Memory; Stationary and nonstationary increments; Autocorrelations; Efficient market hypothesis; Fractional Brownian motion (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108000848
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:15:p:3916-3920
DOI: 10.1016/j.physa.2008.01.049
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().