A kinetic model for the premelting of a crystalline structure
Yuri Djikaev and
Eli Ruckenstein
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 1, 134-144
Abstract:
An analytical kinetic approach to examine the premelting phenomenon is suggested by using a first passage time analysis. Premelting is considered to occur when the time of formation of a Frenkel type defect in the surface monolayer becomes sufficiently small. The mean time of defect formation on the surface lattice, i.e., the mean time necessary for a selected (surface-located) molecule to leave its lattice site and form a Frenkel defect, is calculated by using a first passage time analysis. The model is illustrated by numerical calculations for a crystalline structure composed of molecules interacting via the Lennard-Jones (LJ) potential. The lattice vectors in the plane parallel to the free surface of the crystal were assumed to be equal (to the lattice parameter) and the angle between them was varied. The model predictions of the Tammann temperature (of premelting) are very sensitive to the parameters of the LJ potential. In all the cases considered, the temperature dependence of the mean first passage time has two clearly distinct regimes: at low temperatures the dependence is sharp and at high temperatures it is weak.
Keywords: Premelting; Tammann temperature; First passage time analysis (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107008813
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:1:p:134-144
DOI: 10.1016/j.physa.2007.08.022
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().