Blocks adjustment—reduction of bias and variance of detrended fluctuation analysis using Monte Carlo simulation
Sebastian Michalski
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 1, 217-242
Abstract:
The length of minimal and maximal blocks equally distant on log–log scale versus fluctuation function considerably influences bias and variance of DFA. Through a number of extensive Monte Carlo simulations and different fractional Brownian motion/fractional Gaussian noise generators, we found the pair of minimal and maximal blocks that minimizes the sum of mean-squared error of estimated Hurst exponents for the series of length N=2p,p=7,…,15. Sensitivity of DFA to sort-range correlations was examined using ARFIMA(p,d,q) generator. Due to the bias of the estimator for anti-persistent processes, we narrowed down the range of Hurst exponent to 12⩽H<1.
Keywords: Detrended fluctuation analysis; Scaled windowed variance; Fractional Brownian motion; Hurst exponent; ARFIMA (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107008771
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:1:p:217-242
DOI: 10.1016/j.physa.2007.08.018
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().