EconPapers    
Economics at your fingertips  
 

Escape by diffusion from a square well across a square barrier

B.U. Felderhof

Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 1, 39-56

Abstract: The problem of escape of a particle by diffusion from a square potential well across a square barrier is studied on the basis of the one-dimensional Smoluchowski equation for the space- and time-dependent probability distribution. For the model potential the Smoluchowski equation is solved exactly by a Laplace transform with respect to time. In the limit of a high barrier the rate of escape is given by an asymptotic result similar to that derived by Kramers for a curved well and a curved barrier. An approximate analytic formula is derived for the outward time-dependent probability current in terms of the width and depth of the well and the width and height of the barrier. A similar expression holds for the complete probability distribution.

Keywords: Diffusion; Escape; Heat conduction (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107009417
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:1:p:39-56

DOI: 10.1016/j.physa.2007.08.041

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:387:y:2008:i:1:p:39-56