EconPapers    
Economics at your fingertips  
 

Diffusion in a bistable potential

B.U. Felderhof

Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 21, 5017-5023

Abstract: The problem of diffusion of a particle in a bistable potential is studied on the basis of the one-dimensional Smoluchowski equation for the space- and time-dependent probability distribution. The potential is modeled as two parabolic wells separated by a parabolic barrier. For the model potential the Smoluchowski equation is solved exactly by a Laplace transform with respect to time for the initial condition that at time zero the probability distribution is given by a thermal equilibrium distribution in one of the wells. In the limit of a high barrier the rate of transition to the other well is given by an asymptotic result due to Kramers. For a potential barrier of moderate height there are significant corrections to the asymptotic result.

Keywords: Bistable potential; Barrier crossing; Transition rate (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108004032
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:21:p:5017-5023

DOI: 10.1016/j.physa.2008.04.034

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:387:y:2008:i:21:p:5017-5023