Modeling polymerization of microtubules: A semi-classical nonlinear field theory approach
Vahid Rezania and
Jack Tuszynski
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 23, 5795-5809
Abstract:
In this paper, for the first time, a three-dimensional treatment of microtubules’ polymerization is presented. Starting from fundamental biochemical reactions during microtubule’s assembly and disassembly processes, we systematically derive a nonlinear system of equations that determines the dynamics of microtubules in three dimensions. We found that the dynamics of a microtubule is mathematically expressed via a cubic-quintic nonlinear Schrödinger (NLS) equation. We show that in 3D a vortex filament, a generic solution of the NLS equation, exhibits linear growth/shrinkage in time as well as temporal fluctuations about some mean value which is qualitatively similar to the dynamic instability of microtubules. By solving equations numerically, we have found spatio-temporal patterns consistent with experimental observations.
Keywords: Microtubule; Polymerization; Dynamic instability; Quantum theory (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108005542
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:23:p:5795-5809
DOI: 10.1016/j.physa.2008.06.023
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().