Pressure-driven transient flows of Newtonian fluids through microtubes with slip boundary
Yong Hong Wu,
B. Wiwatanapataphee and
Maobin Hu
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 24, 5979-5990
Abstract:
Recent advances in microscale experiments and molecular simulations confirm that slip of fluid on solid surface occurs at small scale, and thus the traditional no-slip boundary condition in fluid mechanics cannot be applied to flow in micrometer and nanometer scale tubes and channels. On the other hand, there is an urgent need to understand fluid flow in micrometer scale due to the emergence of biochemical lab-on-the-chip system and micro-electromechanical system fabrication technologies. In this paper, we study the pressure driven transient flow of an incompressible Newtonian fluid in microtubes with a Navier slip boundary condition. An exact solution is derived and is shown to include some existing known results as special cases. Through analysis of the derived solution, it is found that the influences of boundary slip on the flow behaviour are qualitatively different for different types of pressure fields driving the flow. For pressure fields with a constant pressure gradient, the boundary slip does not alter the interior material deformation and stress field; while, for pressure fields with a wave form pressure gradient, the boundary slip causes the change of interior material deformation and consequently the velocity profile and stress field. We also derive asymptotic expressions for the exact solution through which a parameter β̄ is identified to dominate the behaviour of the flow driven by the wave form pressure gradient, and an explicit formulae for the critical slip parameter leading to the maximum transient flow rate is established.
Keywords: Fluid flow; Microtube; Slip boundary condition; Navier–Stokes equations; Flow rate (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108005827
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:24:p:5979-5990
DOI: 10.1016/j.physa.2008.06.043
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().