Spectral reconstruction of complex networks
Francesc Comellas and
Jordi Diaz-Lopez
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 25, 6436-6442
Abstract:
In this paper we study the reconstruction of a network topology from the eigenvalues of its Laplacian matrix. We introduce a simple cost function and consider the tabu search combinatorial optimization method, while comparing its performance when reconstructing different categories of networks–random, regular, small-world, scale-free and clustered–from their eigenvalues. We show that this combinatorial optimization method, together with the information contained in the Laplacian spectrum, allows an exact reconstruction of small networks and leads to good approximations in the case of networks with larger orders. We also show that the method can be used to generate a quasi-optimal topology for a network associated to a dynamic process (like in the case of metabolic or protein–protein interaction networks of organisms).
Keywords: Complex networks; Eigenvalues; Laplacian spectrum; Tabu search (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108006791
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:25:p:6436-6442
DOI: 10.1016/j.physa.2008.07.032
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().