A “No-Go” theorem for the existence of a discrete action principle
Gianluca Caterina and
Bruce Boghosian
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 27, 6734-6744
Abstract:
In this paper, we study the problem of the existence of a least-action principle for invertible, second-order dynamical systems, discrete in time and space. We show that, when the configuration space is finite and arbitrary state transitions are allowed, a least-action principle does not exist for such systems. We dichotomize discrete dynamical systems with infinite configuration spaces into those of finite type for which this theorem continues to hold, and those not of finite type for which it is possible to construct a least-action principle. We also show how to recover an action, by restriction of the phase space of certain second-order discrete dynamical systems. We provide numerous examples to illustrate each of these results.
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108007735
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:27:p:6734-6744
DOI: 10.1016/j.physa.2008.09.007
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().