Quantum Brownian motion of a macroscopic object in a general environment
Chung-Hsien Chou,
B.L. Hu and
Ting Yu
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 2, 432-444
Abstract:
For the purpose of understanding the quantum behaviour such as quantum decoherence, fluctuations, dissipation, entanglement and teleportation of a mesoscopic or macroscopic object interacting with a general environment, we derive here a set of exact master equations for the reduced density matrix of N interacting harmonic oscillators in a heat bath with arbitrary spectral density and temperature. Two classes of problems of interest to us which these equations can be usefully applied to are that of the quantum dynamics of nanoelectromechanical oscillators and the entanglement evolution of multipartite macroscopic states such as quantum superposition of mirrors in a high Q cavity. To address a key conceptual issue for macroscopic quantum phenomena we examine the conditions for an assumption often implicitly made in these studies to be valid, namely, that the quantum behaviour of a macroscopic object in an environment can be accurately represented by only treating the dynamics of its centre-of-mass variable. We also mention how these results can be used to calculate the uncertainty principle governing a macroscopic object at finite temperature.
Keywords: Quantum Brownian motion; Master equation; Decoherence (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107010163
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:2:p:432-444
DOI: 10.1016/j.physa.2007.09.025
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().