EconPapers    
Economics at your fingertips  
 

Applicable filtering framework for online multiclass freeway network estimation

D. Ngoduy

Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 2, 599-616

Abstract: Real-time traffic flow estimation is important for online traffic control and management. The traffic state estimator optimally matches traffic measurements from detectors with traffic flow predictions from a dynamic traffic model under a certain control strategy. The current and widely used estimator is based on the Extended Kalman Filter algorithm (EKF). Basically, EKF is developed from the recursive Bayesian estimation technique for Gaussian random distribution of the state. This approximation may result in large errors in the estimation and even lead to divergence of the filter in highly non-linear dynamic system such as heterogeneous traffic flow operations. The aims of this paper are therefore twofold. On the one hand, we present a generalized stochastic macroscopic traffic model for multiclass freeway networks. The model is developed in the form that can be applied by filtering methods. On the other hand, we implement an accurate probabilistic framework to the real-time multiclass freeway network estimation. The framework uses a variation of Kalman Filter, namely Unscented Kalman Filter, and a different filter that is based on a sequential Monte Carlo method, namely Unscented Particle Filter. We investigate the performance of the proposed framework with respect to accuracy and computational effort using real-life data collected in a freeway network in England. We expect that the developed tool is useful for traffic operators and planners in controlling large-scale multiclass freeway networks.

Keywords: Macroscopic model; Unscented Kalman Filter; Unscented Particle Filter; Multiclass traffic estimation (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710701059X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:2:p:599-616

DOI: 10.1016/j.physa.2007.10.013

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:387:y:2008:i:2:p:599-616