Constructal view of the scaling laws of street networks — the dynamics behind geometry
A. Heitor Reis
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 2, 617-622
Abstract:
The distributions of street lengths and nodes follow inverse-power distribution laws. That means that the smaller the network components, the more numerous they have to be. In addition, street networks show geometrical self-similarities over a range of scales. Based on these features many authors claim that street networks are fractal in nature. What we show here is that both the scaling laws and self-similarity emerge from the underlying dynamics, together with the purpose of optimizing flows of people and goods in time, as predicted by the Constructal Law. The results seem to corroborate the prediction that cities’ fractal dimension approaches 2 as they develop and become more complex.
Keywords: Street networks; Scaling laws; Constructal theory (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107010618
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:2:p:617-622
DOI: 10.1016/j.physa.2007.10.003
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().