EconPapers    
Economics at your fingertips  
 

Random matrix analysis of network Laplacians

Sarika Jalan and Jayendra N. Bandyopadhyay

Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 2, 667-674

Abstract: We analyse the eigenvalue fluctuations of the Laplacian of various networks under the random matrix theory framework. Analyses of random networks, scale-free networks and small-world networks show that the nearest neighbor spacing distribution of the Laplacian of these networks follow Gaussian orthogonal ensemble statistics of the random matrix theory. Furthermore, we study the nearest neighbor spacing distribution as a function of the random connections and find that the transition to the Gaussian orthogonal ensemble statistics occurs at the small-world transition.

Keywords: Network; Graph Laplacian; Random matrix theory (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107009922
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:2:p:667-674

DOI: 10.1016/j.physa.2007.09.026

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:387:y:2008:i:2:p:667-674