Transient dynamics of sparsely connected Hopfield neural networks with arbitrary degree distributions
Pan Zhang and
Yong Chen
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 4, 1009-1015
Abstract:
Using probabilistic approach, the transient dynamics of sparsely connected Hopfield neural networks is studied for arbitrary degree distributions. A recursive scheme is developed to determine the time evolution of overlap parameters. As illustrative examples, the explicit calculations of dynamics for networks with binomial, power-law, and uniform degree distribution are performed. The results are good agreement with the extensive numerical simulations. It indicates that with the same average degree, there is a gradual improvement of network performance with increasing sharpness of its degree distribution, and the most efficient degree distribution for global storage of patterns is the delta function.
Keywords: Neural networks; Complex networks; Degree distribution; Probability theory (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107010102
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:4:p:1009-1015
DOI: 10.1016/j.physa.2007.09.047
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().