On the correlation structure of some random point processes on the line
Joël de Coninck,
François Dunlop and
Thierry Huillet
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 4, 725-744
Abstract:
The correlation structure of some remarkable point processes on the one-dimensional real line is investigated. More specifically, focus is on translation invariant determinantal, permanental and/or renewal point processes. In some cases, anomalous (non-Poissonian) fluctuations for the number of points in a large window can be observed. This may be read from the total correlation function of the point process. We try to understand when and why this occurs and what are the anomalous behaviors to be expected.
Keywords: Random systems; Determinantal, permanental and renewal point processes on the line; Correlation functions; Sub- and super-homogeneous point processes; Anomalous fluctuations (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107010758
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:4:p:725-744
DOI: 10.1016/j.physa.2007.10.018
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().