The effect of atomic motion and two-quanta JCM on the information entropy
S. Abdel-Khalek
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 4, 779-786
Abstract:
We study the interaction between a moving two-level atom and a single-mode field. The coupled atom–cavity system with atomic center-of-mass motion included is modeled by considering the dependence of the atomic motion along z-axis. At exact resonance between the internal atomic transition and the cavity eigenfrequency, an exact solution of the system is obtained and periodically modulated Rabi oscillations and regular translational motion are observed. We focused on the dynamics of both field Wehrl entropy and Wehrl phase distribution. The influence of the atomic motion on the evolution of von Neumann entropy and Wehrl entropy is examined. The results show that the atomic motion and the field-mode structure play important roles in the evolution of the von Neumann entropy, Wehrl entropy and Wehrl PD.
Keywords: Jaynes Cummings model; Atomic motion; Wehrl phase distribution; Wehrl entropy (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107009958
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:4:p:779-786
DOI: 10.1016/j.physa.2007.09.034
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().