Self-similar branching of aftershock sequences
James R. Holliday,
Donald L. Turcotte and
John B. Rundle
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 4, 933-943
Abstract:
In this paper we propose a branching aftershock sequence (BASS) model for seismicity. We suggest that the BASS model is a preferred alternative to the widely studied epidemic type aftershock sequence (ETAS) model. In the BASS model an initial, or seed, earthquake is specified. The subsequent earthquakes are obtained from the statistical distributions of magnitude, time, and location. The magnitude scaling is based on a combination of the Gutenberg–Richter scaling relation and the modified Båth’s law for the scaling relation of aftershocks relative to the magnitude of the seed earthquake. Omori’s law specifies the distribution of earthquake times, and a modified form of Omori’s law specifies the distribution of earthquake locations. Since the BASS model is specified by the four scaling relations, it is fully self-similar. This is not the case for ETAS. We also give a deterministic version of BASS and show that it satisfies Tokunaga side-branching statistics in a similar way to diffusion-limited aggregation (DLA).
Keywords: Aftershocks; Scaling; Branching; Epidemic-type models; Earthquakes; Hazard assessment (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107010126
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:4:p:933-943
DOI: 10.1016/j.physa.2007.09.045
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().