Stochastic resonance of a periodically driven neuron under non-Gaussian noise
J.R.R. Duarte,
M.V.D. Vermelho and
M.L. Lyra
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 7, 1446-1454
Abstract:
We investigate the first-passage-time statistics of the integrate–fire neuron model driven by a sub-threshold harmonic signal superposed with a non-Gaussian noise. Here, we considered the noise as the result of a random multiplicative process displaced from the origin by an additive term. Such a mechanism generates a power-law distributed noise whose characteristic decay exponent can be finely tuned. We performed numerical simulations to analyze the influence of the noise non-Gaussian character on the stochastic resonance condition. We found that when the noise deviates from Gaussian statistics, the resonance condition occurs at weaker noise intensities, achieving a minimum at a finite value of the distribution function decay exponent. We discuss the possible relevance of this feature to the efficiency of the firing dynamics of biological neurons, as the present result indicates that neurons would require a lower noise level to detect a sub-threshold signal when its statistics departs from Gaussian.
Keywords: Stochastic resonance; Non-Gaussian noise; Integrate–fire model (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107012137
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:7:p:1446-1454
DOI: 10.1016/j.physa.2007.11.011
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().