Hamiltonian and Brownian systems with long-range interactions: IV. General kinetic equations from the quasilinear theory
Pierre-Henri Chavanis
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 7, 1504-1528
Abstract:
We develop the kinetic theory of Hamiltonian systems with weak long-range interactions. Starting from the Klimontovich equation and using a quasilinear theory, we obtain a general kinetic equation that can be applied to spatially inhomogeneous systems and that takes into account memory effects. This equation is valid at order 1/N in a proper thermodynamic limit and it coincides with the kinetic equation obtained from the BBGKY hierarchy. For N→+∞, it reduces to the Vlasov equation governing collisionless systems. We describe the process of phase mixing and violent relaxation leading to the formation of a quasistationary state (QSS) on the coarse-grained scale. We interpret the physical nature of the QSS in relation to Lynden-Bell’s statistical theory and discuss the problem of incomplete relaxation. In the second part of the paper, we consider the relaxation of a test particle in a thermal bath. We derive a Fokker–Planck equation by directly calculating the diffusion tensor and the friction force from the Klimontovich equation. We give general expressions of these quantities that are valid for possibly spatially inhomogeneous systems with long correlation time. We show that the diffusion and friction terms have a very similar structure given by a sort of generalized Kubo formula. We also obtain non-Markovian kinetic equations that can be relevant when the auto-correlation function of the force decreases slowly with time. An interesting factor in our approach is the development of a formalism that remains in physical space (instead of Fourier space) and that can deal with spatially inhomogeneous systems.
Keywords: Long-range interactions; Kinetic theory (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107011223
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:7:p:1504-1528
DOI: 10.1016/j.physa.2007.10.034
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().