Absorbing phase transition in contact process on fractal lattices
Sang B. Lee
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 7, 1567-1576
Abstract:
We investigate the critical behavior of nonequilibrium phase transition from an active phase to an absorbing state on two selected fractal lattices, i.e., on a checkerboard fractal and on a Sierpinski carpet. The checkerboard fractal is finitely ramified with many dead ends, while the Sierpinski carpet is infinitely ramified. We measure various critical exponents of the contact process with a diffusion–reaction scheme A→AA and A→0, characterized by a spreading with a rate λ and an annihilation with a rate μ, and the results are confirmed by a crossover scaling and a finite-size scaling. The exponents, compared with the ϵ-expansion results assuming ϵ=4−dF, dF being the fractal dimension of the underlying fractal lattice, exhibit significant deviations from the analytical results for both the checkerboard fractal and the Sierpinski carpet. On the other hand, the exponents on a checkerboard fractal agree well with the interpolated results of the regular lattice for the fractional dimensionality, while those on a Sierpinski carpet show marked deviations.
Keywords: Absorbing phase transition; Contact process; Checkerboard fractal; Sierpinski carpet; Critical exponents; Scaling (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107012034
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:7:p:1567-1576
DOI: 10.1016/j.physa.2007.11.014
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().