EconPapers    
Economics at your fingertips  
 

Diophantine networks

Bedogne’, C., A.P. Masucci and G.J. Rodgers

Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 8, 2161-2169

Abstract: We introduce a new class of deterministic networks by associating networks with Diophantine equations, thus relating network topology to algebraic properties. The network is formed by representing integers as vertices and by drawing cliques between M vertices every time that M distinct integers satisfy the equation. We analyse the network generated by the Pythagorean equation x2+y2=z2 showing that its degree distribution is well approximated by a power law with exponential cut-off. We also show that the properties of this network differ considerably from the features of scale-free networks generated through preferential attachment. Remarkably we also recover a power law for the clustering coefficient.

Keywords: Network; Weighted; Deterministic; Pythagorean; Scale free (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107012642
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:8:p:2161-2169

DOI: 10.1016/j.physa.2007.11.038

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:387:y:2008:i:8:p:2161-2169