Vehicular motion on a selected path in a 2d traffic network controlled by signals
Takashi Nagatani
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 14, 2911-2921
Abstract:
We study the dynamic behavior of vehicular traffic through a series of traffic lights on selected paths in a two-dimensional (2d) traffic network. The city traffic network is made of one-way perpendicular streets arranged in a square lattice with traffic signals where vertical streets are oriented upwards and horizontal streets are oriented rightwards. A vehicle moves through the series of signals on a path selected by the driver. The selected path is one of the straight, zigzag, and random paths in a 2d traffic network. The vehicular motion on a selected path is presented by the nonlinear-map model. Vehicular traffic exhibits very complex behavior with varying selected paths, cycle times, and vehicular density. The dependence of the arrival time on cycle time, selected path, and density is clarified for 2d city traffic.
Keywords: Traffic dynamics; Signal control; City traffic network; Nonlinear map; Random path; Complex system (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109002489
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:14:p:2911-2921
DOI: 10.1016/j.physa.2009.03.034
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().