EconPapers    
Economics at your fingertips  
 

Finite size effects for the Ising model on random graphs with varying dilution

Julien Barré, Antonia Ciani, Duccio Fanelli, Franco Bagnoli and Stefano Ruffo

Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 17, 3413-3425

Abstract: We investigate the finite size corrections to the equilibrium magnetization of an Ising model on a random graph with N nodes and Nγ edges, with 1<γ≤2. By conveniently rescaling the coupling constant, the free energy is made extensive. As expected, the system displays a phase transition of the mean-field type for all the considered values of γ at the transition temperature of the fully connected Curie–Weiss model. Finite size corrections are investigated for different values of the parameter γ, using two different approaches: a replica based finite N expansion, and a cavity method. Numerical simulations are compared with theoretical predictions. The cavity based analysis is shown to agree better with numerics.

Keywords: Ising model; Random graphs; Finite size effects; Replica method; Cavity method (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710900329X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:17:p:3413-3425

DOI: 10.1016/j.physa.2009.04.024

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:388:y:2009:i:17:p:3413-3425