Approximating long-memory DNA sequences by short-memory process
Jie Gao,
Zhen-yuan Xu and
Li-ting Zhang
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 17, 3475-3485
Abstract:
This paper analyzes the approximation of a general long-memory ARFIMA (p,d,q) process by a short-memory ARMA(1, 1) process. To validate this approximation, a mean square error forecast criterion is considered, and the calculation of the mean square error between the observation Xt+l of an ARFIMA process and the l-step-ahead forecast of the ARMA(1, 1) process is presented. The performance of the ARMA(1, 1) approximation to an ARFIMA model is illustrated by using an application to a DNA sequence of orf virus. This paper gives some theoretical justification on the mean square error forecast criterion based on a selected ARMA(1, 1) model when compared to the general ARFIMA(p,d,q) process. The paper also provides a DNA sequence of orf virus analysis when the time series is originated from the tangent values of the Chaos Game Representation coordinates for each nucleotide. The conclusions of this paper work well because the estimator value of d is small (dˆ=0.16). The paper also gives the other parameter estimate of the fitted ARFIMA (0, d, 1) model and one-step predictions using ARMA(1, 1) model.
Keywords: ARFIMA(p, d, q); ARMA(1, 1); Long-memory process; Short-memory process; Mean square error (MSE) criterion; DNA sequence; Chaos Game Representation (CGR) (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109003628
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:17:p:3475-3485
DOI: 10.1016/j.physa.2009.05.009
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().