Renormalization group evaluation of exponents in family name distributions
Andrea De Luca and
Paolo Rossi
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 17, 3609-3614
Abstract:
According to many phenomenological and theoretical studies the distribution of family name frequencies in a population can be asymptotically described by a power law. We show that the Galton–Watson process corresponding to the dynamics of a growing population can be represented in Hilbert space, and its time evolution may be analyzed by renormalization group techniques, thus explaining the origin of the power law and establishing the connection between its exponent and the ratio between the population growth and the name production rates.
Keywords: Branching process; Galton Watson; Renormalization group; Family name distribution; Power law; Population (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109002854
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:17:p:3609-3614
DOI: 10.1016/j.physa.2009.04.017
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().