The laws of establishing stationary composition in a droplet condensing in a binary vapor–gas environment
Fedor M. Kuni,
Alexandra A. Lezova and
Alexander K. Shchekin
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 18, 3728-3736
Abstract:
It is shown that the mole fractions of components within a droplet growing in an atmosphere of two condensing gases and a carrier gas approach their stationary values with a power-law behavior in time on a large scale and with exponential behavior on a small scale for both diffusion-controlled and free-molecular regimes of isothermal condensation. The parameters of the power and the exponential laws are specified for each regime of binary condensation and are linked to the thermodynamic and kinetic characteristics of condensing vapors and to the stationary mole fractions of the components in a growing binary droplet. The stationary composition of the solution within the droplet is shown to be established at a comparatively small relative increase of the droplet radius. A relaxation equation for the droplet composition at arbitrary initial deviations of mole fractions from their stationary values has been solved, and the limitations on the initial deviations allowing monotonic establishment of stationary composition in solution within a growing droplet have been considered.
Keywords: Aerosol formation; Binary condensation; Droplet growth; Diffusion-controlled regime; Free-molecular regime (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109004257
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:18:p:3728-3736
DOI: 10.1016/j.physa.2009.05.043
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().