Relativistic transport theory for simple fluids to first order in the gradients
A. Sandoval-Villalbazo,
A.L. Garcia-Perciante and
L.S. Garcia-Colin
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 18, 3765-3770
Abstract:
In this paper we show how using a relativistic kinetic equation the ensuing expression for the heat flux can be cast in the form required by Classical Irreversible Thermodynamics. Indeed, it is linearly related to the temperature and number density gradients and not to the acceleration as the so called “first order in the gradients” theories propose. Since the specific expressions for the transport coefficients are irrelevant for our purposes, the BGK form of the kinetic equation is used. Moreover, from the resulting hydrodynamic equations it is readily seen that the equilibrium state is stable in the presence of the spontaneous fluctuations in the transverse hydrodynamic velocity mode of the simple relativistic fluid. The implications of this result are thoroughly discussed.
Keywords: Relativistic Boltzmann equation; Linearized hydrodynamics; Fluctuations (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710900435X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:18:p:3765-3770
DOI: 10.1016/j.physa.2009.06.001
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().