Transport and dynamical properties of inertial ratchets
M.F. Carusela,
A.J. Fendrik and
L. Romanelli
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 19, 4017-4024
Abstract:
In this paper we discuss the dynamics and transport properties of a massive particle in a ratchet type potential immersed in a dissipative environment. The directional currents and characteristics of the motion are studied as the specific frictional coefficient varies, finding that the stationary regime is strongly dependent on this parameter. The maximal Lyapunov exponent and the current show large fluctuations and inversions, therefore for some range of the control parameter, this inertial ratchet could originate a mass separation device. Also an exploration of the effect of a random force on the system is performed.
Keywords: Noise; Brownian motion; Classical transport (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109004889
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:19:p:4017-4024
DOI: 10.1016/j.physa.2009.06.031
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().