Surface dynamics and breakdown patterns of a random solid subject to a biased 3D etching
A.P. Reverberi,
L. Maga,
A. Barbucci and
A.G. Bruzzone
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 1, 51-58
Abstract:
We propose a selective disaggregation model in three dimensions with a mixed Brownian-deterministic motion of the etchant particle driven by a tuning parameter taking into account the presence of an external field. The width of the surface sites in saturation is described by the Edwards–Wilkinson scaling law as in a ballistic selective decay process. Besides, we consider the surfaces resulting when the solid substrate is completely eroded up to the electrical breakdown. In this situation, we analyse the effects of the etchant particle motion on the topology and conductivity of the residual substrate and we compare the relevant patterns with the ones related to the classical percolation theory. These results may interpret some recent experimental findings in electrochemical nanotechnology.
Keywords: Etching; Monte Carlo simulations; Conductivity (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108007966
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:1:p:51-58
DOI: 10.1016/j.physa.2008.09.023
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().