Clustering of volatility in variable diffusion processes
Gemunu H. Gunaratne,
Matthew Nicol,
Lars Seemann and
Andrei Török
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 20, 4424-4430
Abstract:
Increments in financial markets have anomalous statistical properties including fat-tailed distributions and volatility clustering (i.e., the autocorrelation functions of return increments decay quickly but those of the squared increments decay slowly). One of the central questions in financial market analysis is whether the nature of the underlying stochastic process can be deduced from these statistical properties. We have shown previously that a class of variable diffusion processes has fat-tailed distributions. Here we show analytically that such models also exhibit volatility clustering. To our knowledge, this is the first case where clustering of volatility is proven analytically in a model.
Keywords: Variable diffusion processes; Clustering of volatility; Financial markets; Stochastic differential equations (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710900497X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:20:p:4424-4430
DOI: 10.1016/j.physa.2009.06.050
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().