A topological phase transition between small-worlds and fractal scaling in urban railway transportation networks?
Antonio Doménech
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 21, 4658-4668
Abstract:
Fractal and small-worlds scaling laws are applied to study the growth of urban railway transportation networks using total length and total population as observational parameters. In spite of the variety of populations and urban structures, the variation of the total length of the railway network with the total population of conurbations follows similar patterns for large and middle metropolis. Diachronous analysis of data for urban transportation networks suggests that there is second-order phase transition from small-worlds behaviour to fractal scaling during their early stages of development.
Keywords: Transportation systems; Phase transition; Fractal; Small-worlds (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109005974
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:21:p:4658-4668
DOI: 10.1016/j.physa.2009.07.036
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().