Effects of accelerating growth on the evolution of weighted complex networks
Zhongzhi Zhang,
Lujun Fang,
Shuigeng Zhou and
Jihong Guan
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 2, 225-232
Abstract:
Many real systems possess accelerating statistics where the total number of edges grows faster than the network size. In this paper, we propose a simple weighted network model with accelerating growth. We derive analytical expressions for the evolutions and distributions for strength, degree, and weight, which are relevant to accelerating growth. We also find that accelerating growth determines the clustering coefficient of the networks. Interestingly, the distributions for strength, degree, and weight display a transition from scale-free to exponential form when the parameter with respect to accelerating growth increases from a small to large value. All the theoretical predictions are successfully contrasted with numerical simulations.
Keywords: Complex network; Weighted network; Accelerating network (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108008364
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:2:p:225-232
DOI: 10.1016/j.physa.2008.10.008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().