EconPapers    
Economics at your fingertips  
 

A decomposed equation for local entropy and entropy production in volume-preserving coarse-grained systems

Hideshi Ishida

Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 4, 332-342

Abstract: In this study an equation for the local entropy is derived based on the formulation of a master equation and is applied to volume-preserving maps. The equation consists of the following terms: unsteady, convection, diffusion, probability-weighted phase space volume expansion rate, nonnegative entropy production, and residuals. The decomposition makes it possible to evaluate entropy production in terms of microscopic dynamics and is expected to be applicable to many coarse-grained systems on the phase space. When it is applied to two volume-preserving multibaker chain systems it is confirmed that the summation of the nonnegative entropy production on each site numerically coincides with the entropy production introduced by Gilbert et al. [T. Gilbert, J.R. Dorfman, P. Gaspard, Entropy production, fractals, and relaxation to equilibrium, Phys. Rev. Lett. 85 (2000) 1606–1609] and the phenomenological expression both in nonequilibrium steady and unsteady states. The coincidence is brought about by the fact that the residual terms vanish in the thermodynamic limit when they are integrated on each site. It follows that the entropy production is dominated by the nonnegative entropy production term and becomes positive in nonequilibrium states.

Keywords: Coarse graining; Decomposed equation for local entropy; Entropy production; Thermodynamic limit; Volume-preserving system; Multibaker map (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108009035
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:4:p:332-342

DOI: 10.1016/j.physa.2008.10.043

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:388:y:2009:i:4:p:332-342