EconPapers    
Economics at your fingertips  
 

Conservation laws and hierarchies of potential symmetries for certain diffusion equations

N.M. Ivanova, R.O. Popovych, C. Sophocleous and O.O. Vaneeva

Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 4, 343-356

Abstract: We show that the so-called hidden potential symmetries considered in a recent paper [M.L. Gandarias, New potential symmetries for some evolution equations, Physica A 387 (2008) 2234–2242] are ordinary potential symmetries that can be obtained using the method introduced by Bluman and collaborators [G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer, New York, 1989; G.W. Bluman, G.J. Reid, S. Kumei, New classes of symmetries for partial differential equations, J. Math. Phys. 29 (1988) 806–811]. In fact, these are simplest potential symmetries associated with potential systems which are constructed with single conservation laws having no constant characteristics. Furthermore we classify the conservation laws for classes of porous medium equations, and then using the corresponding conserved (potential) systems we search for potential symmetries. This is the approach one needs to adopt in order to determine the complete list of potential symmetries. The provenance of potential symmetries is explained for the porous medium equations by using potential equivalence transformations. Point and potential equivalence transformations are also applied to deriving new results on potential symmetries and corresponding invariant solutions from known ones. In particular, in this way the potential systems, potential conservation laws and potential symmetries of linearizable equations from the classes of differential equations under consideration are exhaustively described. Infinite series of infinite-dimensional algebras of potential symmetries are constructed for such equations.

Keywords: Potential symmetries; Conservation laws; Diffusion equations; Potential equivalence transformations (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108008704
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:4:p:343-356

DOI: 10.1016/j.physa.2008.10.018

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:388:y:2009:i:4:p:343-356