Personal recommendation via modified collaborative filtering
Run-Ran Liu,
Chun-Xiao Jia,
Tao Zhou,
Duo Sun and
Bing-Hong Wang
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 4, 462-468
Abstract:
In this paper, we propose a novel method to compute the similarity between congeneric nodes in bipartite networks. Different from the standard cosine similarity, we take into account the influence of a node’s degree. Substituting this new definition of similarity for the standard cosine similarity, we propose a modified collaborative filtering (MCF). Based on a benchmark database, we demonstrate the great improvement of algorithmic accuracy for both user-based MCF and object-based MCF.
Keywords: Recommendation system; Bipartite network; Similarity; Collaborative filtering; Infophysics (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108008297
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:4:p:462-468
DOI: 10.1016/j.physa.2008.10.010
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().