Multiscale derivation of an augmented Smoluchowski equation
Z. Shreif and
P. Ortoleva
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 5, 593-600
Abstract:
Smoluchowski and Fokker–Planck equations for the stochastic dynamics of order parameters have been derived previously. The question of the validity of the truncated perturbation series and the initial data for which these equations exist remains unexplored. To address these questions, we take a simple example, a nanoparticle in a host medium. A perturbation parameter ε, the ratio of the mass of a typical atom to that of the nanoparticle, is introduced and the Liouville equation is solved to O(ε2). Via a general kinematic equation for the reduced probability W of the location of the center-of-mass of the nanoparticle, the O(ε2) solution of the Liouville equation yields an equation for W to O(ε3). An augmented Smoluchowski equation for W is obtained from the O(ε2) analysis of the Liouville equation for a particular class of initial data. However, for a less restricted assumption, analysis of the Liouville equation to higher order is required to obtain closure.
Keywords: Multiscale analysis; Smoluchowski equation; Nanosystems; Stochastic equations; Liouville equation; Order parameters (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108009540
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:5:p:593-600
DOI: 10.1016/j.physa.2008.11.008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().